Born to Die?

Sabotage or progress? How planned obsolescence impacts iPhone consumers.

Vivien Thai
All things come to an end, but when is it considered too soon? Nowadays it seems that we are constantly being proposed with the newest and shiniest model – the Apple brand is especially guilty of this. So let’s dive a little deeper into Apple’s planned obsolescence involving its hardware and software, as well as its impact on us.

Planned obsolescence is a business strategy where a consumer good is purposefully planned and built to become outdated. This practice is implemented with the intent for the product to be replaced with a newer version, seen distinctly in the technology industry due to its advancements and competitive market. This however, “promotes innovation and improves the quality of products” as well as stimulates spending in the economy.

There are three types of obsolescence: obsolescence of function, obsolescence of quality and obsolescence of desirability.

Obsolescence of function involves devices being outmatched by a more capable version that functions better. This is favoured as it introduces genuinely improved products.

Obsolescence of quality is when a product deteriorates over time, thus increasing sales. This could be due to the haste of delivering a new model annually, or it could be a part of the company’s “dubious” strategy.

Obsolescence of desirability is making a product seem out of style, even if it still functions accordingly. It has all to do with making consumers equate something new as being something better.

Regarding hardware, the main perpetrator would have to be infamous pentalobe security screws. At the base of an iPhone you would find two five-petalled screws that holds the front and back enclosures together. These unique screws are exclusive to Apple’s devices yet no official screwdriver is sold, ultimately discouraging self-repair in a situation of needing to replace the battery for example.

These tamper resistant screws fundamentally force consumers to seek aid in company stores or alternatively buy a whole new phone.

Concerning software, of course we will be talking about Apple’s operating system, the iOS. With each new iPhone release comes a new iOS. Of course you would expect that new hardware also comes with new software. This however reduces the value of previous models, as the system is only upwardly compatible; meaning the new phones can run the older systems, yet the older previous phones cannot.

It is understandable that the hardware of the older iPhones aren't capable of running the advanced new iOS, as expected of the ever evolving technology industry. This opinion is defended with the understanding that “planned lifespan added to products in its origins should not be always considered
planned obsolescence.” In the end there is no solid proof if Apple’s software updates are a part of their built-in obsolescence plan, but it sure does leave little doubts.

Not only does the planned obsolescence strategy impact upon us as consumers, but it extends also to the environment. A constant annual surge of new phones mean more resources are used at a faster rate. Then at the other end of the cycle, as new phones are bought, the old ones are easily cast out. This process generates excessive electronic waste that is commonly dumped “in countries with virtually no regulations on waste recycling or management.”

There is a growing call for the electronics industry to move from a linear economy to a circular economy. Whereby products can be easily dissembled to recover resources to be recycled into new ones, thus keeping the resources in circulation. Using this process assures “the maximum value is extracted” from the resources.

Hearing this for the first time it sounds a bit insulting, right? We’re being sold objects that are a part of a giant scheme to get us to quickly throw away our devices to buy new ones. As despicable as it seems, planned obsolescence is indeed a legal business strategy and one that can aid the economy at that. What it comes down to is finding a balance in the production process regarding resourcefulness and durability of the devices.

References: